3.4.69 \(\int \frac {\tanh ^{-1}(a x)}{\sqrt {1-a^2 x^2}} \, dx\) [369]

Optimal. Leaf size=95 \[ -\frac {2 \text {ArcTan}\left (\frac {\sqrt {1-a x}}{\sqrt {1+a x}}\right ) \tanh ^{-1}(a x)}{a}-\frac {i \text {PolyLog}\left (2,-\frac {i \sqrt {1-a x}}{\sqrt {1+a x}}\right )}{a}+\frac {i \text {PolyLog}\left (2,\frac {i \sqrt {1-a x}}{\sqrt {1+a x}}\right )}{a} \]

[Out]

-2*arctan((-a*x+1)^(1/2)/(a*x+1)^(1/2))*arctanh(a*x)/a-I*polylog(2,-I*(-a*x+1)^(1/2)/(a*x+1)^(1/2))/a+I*polylo
g(2,I*(-a*x+1)^(1/2)/(a*x+1)^(1/2))/a

________________________________________________________________________________________

Rubi [A]
time = 0.02, antiderivative size = 95, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.053, Rules used = {6097} \begin {gather*} -\frac {2 \text {ArcTan}\left (\frac {\sqrt {1-a x}}{\sqrt {a x+1}}\right ) \tanh ^{-1}(a x)}{a}-\frac {i \text {Li}_2\left (-\frac {i \sqrt {1-a x}}{\sqrt {a x+1}}\right )}{a}+\frac {i \text {Li}_2\left (\frac {i \sqrt {1-a x}}{\sqrt {a x+1}}\right )}{a} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[ArcTanh[a*x]/Sqrt[1 - a^2*x^2],x]

[Out]

(-2*ArcTan[Sqrt[1 - a*x]/Sqrt[1 + a*x]]*ArcTanh[a*x])/a - (I*PolyLog[2, ((-I)*Sqrt[1 - a*x])/Sqrt[1 + a*x]])/a
 + (I*PolyLog[2, (I*Sqrt[1 - a*x])/Sqrt[1 + a*x]])/a

Rule 6097

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[-2*(a + b*ArcTanh[c*x])*(
ArcTan[Sqrt[1 - c*x]/Sqrt[1 + c*x]]/(c*Sqrt[d])), x] + (-Simp[I*b*(PolyLog[2, (-I)*(Sqrt[1 - c*x]/Sqrt[1 + c*x
])]/(c*Sqrt[d])), x] + Simp[I*b*(PolyLog[2, I*(Sqrt[1 - c*x]/Sqrt[1 + c*x])]/(c*Sqrt[d])), x]) /; FreeQ[{a, b,
 c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[d, 0]

Rubi steps

\begin {align*} \int \frac {\tanh ^{-1}(a x)}{\sqrt {1-a^2 x^2}} \, dx &=-\frac {2 \tan ^{-1}\left (\frac {\sqrt {1-a x}}{\sqrt {1+a x}}\right ) \tanh ^{-1}(a x)}{a}-\frac {i \text {Li}_2\left (-\frac {i \sqrt {1-a x}}{\sqrt {1+a x}}\right )}{a}+\frac {i \text {Li}_2\left (\frac {i \sqrt {1-a x}}{\sqrt {1+a x}}\right )}{a}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.05, size = 76, normalized size = 0.80 \begin {gather*} -\frac {i \left (\tanh ^{-1}(a x) \left (\log \left (1-i e^{-\tanh ^{-1}(a x)}\right )-\log \left (1+i e^{-\tanh ^{-1}(a x)}\right )\right )+\text {PolyLog}\left (2,-i e^{-\tanh ^{-1}(a x)}\right )-\text {PolyLog}\left (2,i e^{-\tanh ^{-1}(a x)}\right )\right )}{a} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[ArcTanh[a*x]/Sqrt[1 - a^2*x^2],x]

[Out]

((-I)*(ArcTanh[a*x]*(Log[1 - I/E^ArcTanh[a*x]] - Log[1 + I/E^ArcTanh[a*x]]) + PolyLog[2, (-I)/E^ArcTanh[a*x]]
- PolyLog[2, I/E^ArcTanh[a*x]]))/a

________________________________________________________________________________________

Maple [A]
time = 2.87, size = 113, normalized size = 1.19

method result size
default \(\frac {i \left (\arctanh \left (a x \right ) \ln \left (1-\frac {i \left (a x +1\right )}{\sqrt {-a^{2} x^{2}+1}}\right )-\arctanh \left (a x \right ) \ln \left (1+\frac {i \left (a x +1\right )}{\sqrt {-a^{2} x^{2}+1}}\right )+\dilog \left (1-\frac {i \left (a x +1\right )}{\sqrt {-a^{2} x^{2}+1}}\right )-\dilog \left (1+\frac {i \left (a x +1\right )}{\sqrt {-a^{2} x^{2}+1}}\right )\right )}{a}\) \(113\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(arctanh(a*x)/(-a^2*x^2+1)^(1/2),x,method=_RETURNVERBOSE)

[Out]

I/a*(arctanh(a*x)*ln(1-I*(a*x+1)/(-a^2*x^2+1)^(1/2))-arctanh(a*x)*ln(1+I*(a*x+1)/(-a^2*x^2+1)^(1/2))+dilog(1-I
*(a*x+1)/(-a^2*x^2+1)^(1/2))-dilog(1+I*(a*x+1)/(-a^2*x^2+1)^(1/2)))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(a*x)/(-a^2*x^2+1)^(1/2),x, algorithm="maxima")

[Out]

integrate(arctanh(a*x)/sqrt(-a^2*x^2 + 1), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(a*x)/(-a^2*x^2+1)^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(-a^2*x^2 + 1)*arctanh(a*x)/(a^2*x^2 - 1), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\operatorname {atanh}{\left (a x \right )}}{\sqrt {- \left (a x - 1\right ) \left (a x + 1\right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(atanh(a*x)/(-a**2*x**2+1)**(1/2),x)

[Out]

Integral(atanh(a*x)/sqrt(-(a*x - 1)*(a*x + 1)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(a*x)/(-a^2*x^2+1)^(1/2),x, algorithm="giac")

[Out]

integrate(arctanh(a*x)/sqrt(-a^2*x^2 + 1), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\mathrm {atanh}\left (a\,x\right )}{\sqrt {1-a^2\,x^2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(atanh(a*x)/(1 - a^2*x^2)^(1/2),x)

[Out]

int(atanh(a*x)/(1 - a^2*x^2)^(1/2), x)

________________________________________________________________________________________